独特手法呈现汉字之美:访香港“双钩”书法家张保声******
中新社香港1月31日电 题:独特手法呈现汉字之美:访香港“双钩”书法家张保声
中新社记者 刘大炜
书法是中华文化特有的艺术表现形式,挥毫泼墨、笔走龙蛇间彰显汉字独特韵味。没有先进印刷术的年代,为保留书法家真迹,“双钩廓填”的书法形式应运而生,并演变为一种书法学习方法。在位于香港龙尾村的家中,香港“双钩”书法家张保声近日接受了中新社记者的采访。
香港“双钩”书法家张保声最近接受了中新社记者的采访。他表示,希望更多年轻人对“双钩”书法感兴趣,传承中国传统文化。 中新社记者 刘大炜 摄“双钩”书法始于南朝,盛于唐宋,是一种用单线直接写出某种书体的空心字。张保声告诉记者,南朝时没有印刷技术,为了能使名家书法作品得以流传,书法家就按作品原样勾勒出空心字,然后再填墨,让观者得到近似真迹的作品,如《兰亭集序》《万岁通天帖》《平安帖》等皆由唐宋名家以此方式保留真迹。
出生于“古建筑之乡”广东汕尾的张保声,受身为石刻、微型山水盆雕民间艺人的外祖父,以及从事古建筑、擅丹青的祖父影响,浸润在传统文化氛围中,从小就喜欢涂鸦。初次接触“双钩”书法,是受其外祖父的熏陶。“因我小时候顽皮淘气,只有在写书法时才得到外祖父称赞和奖励。”
张保声说,之所以喜欢“双钩”书法,还有一个原因是其“书写方便,可就地取材”。无论树枝抑或随便一支笔,都可写出任意大小的“双钩”字。经过对大家名帖年复一年的临摹,张保声终于练就了一手“脱影双钩”(即不用临摹便可写成)的技法,形成了自己独特的书法风格。
常言道“见字如晤”。张保声笔下的字,时而飘逸而出,时而劲风斗转,时而连绵不断。不论任何字体,他都熟稔于心,顷刻间一幅“双钩”书法跃然纸上,用独特手法呈现汉字的美感。
1979年,张保声移居香港,从事建筑行业工作。虽然工作繁忙,他仍未放弃对“双钩”书法的热爱。经多年孜孜不倦的研习,张保声在保留“双钩”书法艺术美感的基础上,融各家之所长,不断推陈出新。
在张保声看来,要传承作为国粹的书法艺术,最好的方式是在传续中创新。如今,他的“双钩”书法不仅从最初的整体“双钩”演变出了叠字“双钩”、汉字合体“双钩”,还吸收中国山水画的独特韵味,将书与画结合,创造出“字中有画”的“双钩”书法。
在港生活多年后,张保声对香港开放包容的文化氛围情有独钟,更深谙香港中外文化艺术交流中心的新定位。近些年,张保声不仅在香港举办展览以推广“双钩”艺术,还远赴重洋到美国、东南亚等地设展,以期让更多人了解“双钩”书法、了解中国文化。每次展览,他的艺术作品都会令观众倍感震撼。
作为“双钩”书法技艺的传承人,张保声更希望年轻人对“双钩”书法感兴趣。他对记者说:“最近几年,我也参加了一些‘非遗进校园’的项目,向香港的青少年学生普及‘双钩’书法等,希望把更多知识传播给下一代,让他们好好认识中国的国粹、了解老祖宗传下来的东西。”(完)
中国科学家构建出新型人工碳晶体****** 中新社合肥1月12日电 (记者 吴兰)中国科学家在新型碳基晶体研究方面取得重要进展——构建出新型人工碳晶体,并实现了其克量级制备。1月12日,国际学术期刊《自然》(Nature)刊发了这一研究成果。 中国科学技术大学朱彦武教授研究团队通过对富勒烯碳60分子晶体进行电荷注入,在常压条件下构建了碳60聚合物晶体以及长程有序多孔碳晶体。 朱彦武介绍:“这里的长程有序多孔碳晶体,微观上具有多孔特征但完整保留了晶体的宏观周期性,是一类新的人工碳晶体,未来可能在能量存储、离子筛分、负载催化等领域具有潜在应用。电荷注入技术为构建这类碳基晶体材料提供了一种拼‘乐高’式的制备技术,有望成为在原子级精度上调控晶体结构的新手段。” 碳是自然界最常见的元素之一,碳原子之间通过不同排列方式,能够形成多种结构,比如石墨、金刚石和无定型碳,已经广泛应用于各领域。近年来,富勒烯、纳米碳管、石墨烯和石墨炔等新型碳材料的发现和发展,引起了广泛关注与研究热潮。 “如果我们可以在一个晶体结构中引入纳米单元,例如用富勒烯、石墨烯等作为基本结构单元代替普通晶体中的原子,像搭积木一样‘搭建’出新型碳材料,可能会发掘更多新奇性质,发挥更大应用潜力。”朱彦武说。 此前,对于制备这类新型碳材料,研究人员要么是利用高温高压等极限条件,要么是采用紫外光、电子束辐照等微观处理技术,但其产率较低、产物不纯,阻碍了人们对该类材料的性质与应用进行更深入探索。 朱彦武团队长期致力于发展新型碳材料的规模化制备技术,早在2011年,就找到了一种化学“活化”的方式“激活”石墨烯。此后,团队进一步探索了“活化”方法的普适性。 在此次研究中,朱彦武团队创造性地使用氮化锂对富勒烯碳60分子晶体进行电荷注入,并在温和温度下进行热处理,最终得到大量的碳60聚合物晶体以及长程有序多孔碳晶体。 朱彦武表示:“接下来,我们将系统地研究长程有序多孔碳基晶体的性质,期望通过精细调节实验参数进一步调控晶体的原子级结构特征,探索更多的性质和应用。”(完) 中国网客户端 国家重点新闻网站,9语种权威发布 |